摘要

为了实时检测无人机异常状态,提出基于隐马尔可夫模型(Hidden Markov Model, HMM)和决策树(Decision Tree, DT)的无人机异常检测方法(HMMDT)。首先根据异常致因将无人机异常分为干扰异常和硬件异常;然后结合HMM和DT建立无人机异常检测模型,定义无人机异常度衡量异常状态的严重程度,确定其阈值作为异常分类标准;最后用经纬600pro型无人机进行实操验证,该方法异常检测召回率达92.9%,准确率达97.2%;对硬件异常的识别准确率达88.2%。结果表明:与传统异常检测方法相比,该方法在可以满足无人机实时异常检测需要的同时,具有较高的检测准确率和较小的时间复杂度。