摘要
针对密集人群场景下的目标检测问题,提出了一种多尺度的目标检测方法。在粗尺度下,使用优化的DPM(Deformable Part Model)检测方法,将人体全身作为检测对象,检测整个场景中的稀疏目标;在细尺度下,将头部作为检测对象,使用重新训练的Faster R-CNN(Region-based Convolutional Neural Network)网络检测稠密人群中的目标。将两种尺度下检测结果通过非极大值抑制(NMS,Non-Maximum Suppression)方法结合在一起,这样两种方法既互相补充又能去除冗余检测结果。实验结果证明,相比于单独的DPM检测方法和Faster R-CNN检测方法,提出的多尺度检测方法在检测精度上有显著提升。
-
单位国防科学技术大学计算机学院; 湖南化身科技有限公司