摘要

通过近红外光谱技术结合模式识别技术,建立重金属Hg、Cd和Pb污染水稻叶片的判别模型,以发展快速检测重金属污染水稻的技术。结果表明:在模拟稻田重金属Hg、Cd和Pb质量分数分别在1.5、1和500mg/kg条件下水稻正常生长发育;叶片近红外光谱数据通过小波函数(daubechies 2,db2)在0~5水平预处理后分别输入反向传递神经网络(back propagation neural networks,BPNN)和径向基神经网络(radial basis function neuralnetworks,RBFNN)预测的结果表明,小波转换采用db2函数第3分解水平对光谱的预处理结合径向基人工神经网络对重金属胁迫下水稻叶片识别效果最优,对Hg、Cd和Pb污染土壤上以及正常条件下生长的水稻叶片的识别正确率分别为95.5%,81.8%,91.3%和100.0%。这为近红外光谱分析技术在重金属污染水稻的识别上提供了初步依据,并有利于保障植物环境安全。

全文