摘要

目前的决策粗糙集研究主要集中在完备离散型信息系统,很少有对不完备连续型数据进行研究,考虑这一问题,提出一种不完备邻域决策粗糙集模型。首先在不完备连续型数据中引入了不完备邻域关系,然后利用该二元关系对传统的决策粗糙集进行重构,一种称之为不完备邻域决策粗糙集的模型被提出,同时基于决策代价原则,进一步地提出了最小化决策代价的属性约简算法。最后通过实验表明了所提出的算法具有更高的属性约简性能。