摘要

基于单一检测手段的变压器故障诊断方法难以对油纸绝缘的同一类型缺陷进行细化识别,无法满足深远海风电快速发展背景下电力系统对设备运行可靠性的要求。因此,本文提出了一种基于局部放电相位(PRPD)图谱和油中溶解气体分析(DGA)信息融合的油纸绝缘缺陷识别方法,设计并制作了6种电极模型,模拟变压器中不同电场不均匀系数的沿面放电典型缺陷,并采集其PRPD及DGA数据;分别采用卷积神经网络(CNN)和反向传播神经网络(BPNN)对6类缺陷的PRPD图谱和DGA特征向量进行模式识别;提出基于D-S证据理论的CNN-BPNN信息融合模型,实现基于PRPD图谱与DGA数据的联合诊断。结果表明:基于D-S证据理论的CNN-BPNN模型可有效纠正单一判据模型的错误输出,并降低分类结果的不确定度,当PRPD图谱输入维度为8×8、16×16、32×32时,融入DGA特征向量的模型识别准确率分别为93.21%、97.53%、99.17%,较PRPD图谱单一判据模型的识别准确率分别提升了4.81%、2.78%、0.84%,该模型可有效融合局部放电的电气物理信息和化学产物信息,既提高了缺陷识别准确率,又增强了输出结果的置信程度,且降低了数据存储要求,可为变压器智能运维提供精确、可靠、轻量的缺陷识别方法。

  • 单位
    清华大学; 电力系统及大型发电设备安全控制和仿真国家重点实验室; 新疆大学; 电力系统及发电设备控制和仿真国家重点实验室

全文