摘要
红外热成像技术是电厂中电力设备故障检测的主要技术。针对现有方法不能有效地挖掘海量红外热图像中包含的设备运行状态信息,以及忽视了设备运行性能退化机制使得诊断效果较为粗糙这两个问题,提出了一种基于图像序列时空特征提取和沙普利加法特征归因聚类算法的精细化诊断策略,结合电力设备的时空特性并融合过程知识,建立了包括正常阶段、注意阶段、预警阶段和异常阶段的多阶段精细退化模型,为电力设备的预测性维修提供了依据。引入具有增量学习能力的宽度学习系统,有效解决了随着电厂设备类型和故障数量的增加而导致的模型适配问题,实现了模型的快速更新。
- 单位