摘要
针对红外线CCD摄像头采集指静脉图像较为模糊造成指静脉识别误检率高的问题,提出了基于分频和多感受野残差密集的指静脉图像超分辨率重建方法。该方法构建了图像高低频信息处理子网络,并将RRFDB结构集成到高频子网络中,以RFB为核心的残差密集块设计提升了感受野并降低计算复杂度,更好地保留了原始指静脉图像的线状纹理特征。实验结果表明,该方法能有效改善指静脉图像质量,与SRCNN、VDSR、DRRN等超分辨率重建方法在FV-USM和MMCBNU-6000数据集上进行对比实验,该方法对指静脉特征提取效果好,重建的图像质量高,PSNR与SSIM均优于其他方法。
-
单位绵阳职业技术学院; 浙江理工大学