摘要

基于贝叶斯空间的人脸识别算法均假定样本空间满足高斯分布,实际上样本空间很复杂,不一定能满足高斯分布。提出一种新的在贝叶斯空间进行人脸识别的算法,该算法通过设定图像灰度级的阈值,统计其出现频率,计算其类条件概率密度,利用贝叶斯公式求后验概率。该方法克服了传统贝叶斯方法难求类内和类间协方差矩阵的缺点,简单易用。实验结果证明,该方法具有可行性,识别率高于传统的基于代数的人脸识别算法(PCA、LDA和PCA+LDA)。