摘要

针对稳定分布环境下非平稳过程分析方法时频滑动平均(TFMA)模型算法的退化,引入分数低阶统计量共变,提出了一种改进的分数低阶时频时频滑动平均(FLO-TFMA)模型算法。推导了FLO-TFMA模型的参数求解过程,给出了基于FLO-TFMA模型的时频谱估计。通过在稳定分布环境下对TFMA模型算法和所提出的FLO-TFMA模型算法的参数估计均方误差(MSE)比较和时频谱估计比较,仿真结果表明,FLO-TFMA模型算法的参数估计精度优于TFMA模型算法,TFMA模型时频谱估计完全失效,而FLO-TFMA模型时频谱算法能较好地进行时频谱估计。