摘要
针对目前现有算法不能很好适用于水下目标检测,同时为提高水下目标检测的实时性和准确性,提出一种基于F-CBAM注意力机制的YOLOv5水下目标检测网络模型FAttention-YOLOv5.模型采用单阶段目标检测网络模型YOLOv5作为基础模型,在模型中嵌入提出的F-CBAM注意力机制,通过在CBAM结构中引用FReLU激活函数,在激活函数阶段通过二维空间捕捉复杂的特征分布情况,实现像素级的空间信息建模能力,提高模型准确率;采用F-CBAM中的通道注意力机制和空间注意力机制提高目标物体的通道权重以及扩大目标对原图的感受野,提高目标检测模型对特征的学习能力;并在FAttention-YOLOv5模型中融合递归网络特征金字塔,通过特征递归使网络充分学习不同尺度的图像特征,从而提高小目标的检测精度;最后对改进模型的损失函数进行优化,避免新模型梯度消失或爆炸.实验结果表明:所设计的水下目标检测模型FAttention-YOLOv5,可以提高模型的特征提取能力,从而有效提高水下目标检测的准确度,为海洋生物捕捉提供新型解决方案和技术辅助.
- 单位