摘要
研究由能量收集发射节点、目的节点和窃听节点组成的能量收集通信系统中,以最大化平均保密传输速率为目标的发送功率控制问题。在环境状态信息事先未知,且系统模型中信道系数、电池电量、收集的能量连续取值的场景下,提出一种基于深度Q网络(deep Q network, DQN)的、仅依赖于当前系统状态的在线功率分配算法。将该功率分配问题建模为马尔科夫决策过程;采用神经网络近似Q值函数来解决系统状态有无限多种组合的问题,通过深度Q网络求解该决策问题,获得仅依赖于当前信道状态和电池状态的功率控制策略。仿真结果表明,相比较随机功率选择算法、贪婪算法和Q学习算法,提出的算法能获得更高的长期平均保密速率。
-
单位通信与信息工程学院; 重庆邮电大学