摘要
为解决目标数未知或随时间变化的多目标跟踪问题,通常将多目标状态和观测数据表示成随机集形式,并通过递推计算目标状态联合分布的概率假设密度(PHD)来完成.然而,对于被动测角的非线性跟踪问题,PHD无法获得闭合解,为此提出一种新的高斯混合粒子PHD算法.该算法利用高斯混合近似PHD,以避免用聚类确定目标状态,并采用拟蒙特卡罗(QMC)积分方法计算目标状态的预测和更新分布.仿真结果验证了所提出算法的有效性.
-
单位电子工程学院; 西安电子科技大学