摘要

针对滚动轴承振动信号特征提取及故障分类困难这一问题,提出了一种基于鲸鱼算法(WOA)的滚动轴承特征信号提取与极限梯度提升的机器学习方法。以模态信号包络熵最小为适应度函数,对变分模态分解(VMD)层数和惩罚因子进行寻优处理。根据所得最佳分解参数对原始信号模态分解,得到各模态分量并根据能量波动法进行特征信号的筛选,最后根据模态分量建立极限梯度提升学习模型。对四类信号进行学习训练和故障分类。结果表明:WOA-VMD与XGBoost结合可以有效降低信号噪声,得到轴承的故障特征,并能够有效的识别出故障类型。

全文