摘要
溶洞识别对于缝洞型油气藏的勘探与开发具有重要意义。传统溶洞识别方法多解性强且效率低,因此将具有强特征学习能力、高泛化性的深度学习方法引入溶洞识别中,但溶洞的地震波场响应特征复杂、异常体尺寸较小、训练样本难以获取等导致深度学习在识别溶洞时仍具挑战性。为此,提出一套识别地震数据溶洞的"两步法"深度学习方法:首先通过U-Net模型识别地震剖面上的"串珠状"异常反射;再根据"串珠状"异常识别结果对地震数据进行小范围截取,输入深度残差网络中,实现对实际溶洞轮廓的预测。对于实际溶洞预测训练数据难以获取这一问题,采用波动方程正演模拟的方法制作具有准确标签的溶洞地震数据。实际地震数据的应用表明,该方法对于溶洞识别准确性高,抗噪能力强,可以极大地节约人工解释成本。
-
单位中国地质大学(武汉); 中国石化西北油田分公司勘探开发研究院; 中国石油化工股份有限公司