摘要
多表征自适应网络(MRAN)用于无监督学习取得了显著成效。但MRAN的特征提取只关注了域在空间结构上的联系而忽略了特征通道之间的联系,在进行无监督领域自适应(UDA)分类时,决策边界附近存在大量混淆数据的情况,当使用信息熵最小化对混淆数据进行分类时,往往会产生错误分类。针对这一问题,提出了基于批量核范数最大化的多表征挤压激励自适应网络(Multi-Representation Squeeze-Excitation Adaptation Network_Batch Kernel Norm Maximization,MRSEAN_BNM)。该网络采用挤压激励注意力机制对多表征特征进行重标定,以强化重要的表征特征,采用条件最大均值差异(CMMD)拉近源域和目标域的特征分布距离,并通过最大化目标域分类输出矩阵的核范数以约束决策边界的混淆数据,达到提升域适应图像分类精度的效果。在基于公开数据集的域适应下的图像分类、可视化结果实验结果表明,MRSEAN_BNM分类精度有明显提升。
- 单位