摘要

对于海上风电功率的预测,传统预测模型未计及因风向与大气条件改变引起的输出功率差异。为了提升预测精度,在考虑大气稳定度的同时,根据风向与功率损失构建出功率风向(power-direction,Pd)模型,并在此基础上提出基于编码–解码(Encoder-decoder)框架的海上风电功率预测方法。该方法可根据Pd模型更新尾流效应损失,并有效平抑预测功率波动,区分不同大气层结稳定度下的尾流效应。首先,通过长短期记忆神经网络(long-short term memory,LSTM)等预测模型验证大气稳定度及Pd模型的有效性,然后使用Encoder-decoder对实际海上风电场进行风电功率预测。实验结果表明,考虑大气稳定度并使用Pd模型的Encoder-decoder方法,其均方根误差较单一Encoder-decoder预测方法降低了2.39%。

全文