摘要

针对无先验知识模式下机械故障特征的选择、融合存在盲目性、片面性,提出了一种基于特征评估与核主分量分析的齿轮故障特征提取与分类方法。该方法采用小波包分解对原始信号进行分解,分别提取原始信号和各分解信号的时域指标组成联合特征,然后确定了稳定性门限值与敏感性筛选比例因子,采用稳定性与敏感性联合评估方法对特征进行评估,并利用核主分量分析方法提取剩余联合特征中的非线性特征,实现不同齿轮故障状态的分类。实验结果表明,这种集成了小波包分解、特征联合评估方法和核主分量分析的齿轮故障分类方法能够更好地提取齿轮故障的特征信息,从大量的故障特征中剔除不稳定与不敏感的劣质特征,明显改善了核主分量分析提取齿轮故障非线性特征的效果。

全文