摘要
近年来,信息量成倍增长,获取有效信息的代价越来越高,答案选择技术能够为用户直接提供所需的信息,具有革命性的意义。给定问题和候选答案,答案选择任务要求从候选答案中找出与问题最相关的答案。不失一般性,候选答案根据与问题的匹配程度可以分为三种类型:不相关、相关不合理、相关且合理。然而,已有工作仅考虑问题与答案的相关性,这对于精准问答是远远不够的。为此,提出多阶段匹配模型(MSMM),模拟人的答题过程。具体的,MSMM模型分为两个阶段,第一阶段先将简单易解决的问答对分离出去,第二阶段再综合推理复杂的问答数据。每一阶段都由嵌入层、编码层、对齐层、融合层和池化层组成。此外,为了增强模型的推理能力,还引入语义角色标注信息和单词相似矩阵信息。为了便于评估,基于WikiQA和InsuranceQA数据集构造了两个答案合理性数据集。实验结果表明,对比基准方法,该模型在性能上取得一致的提升。
- 单位