摘要
针对风机滚动轴承故障诊断需要提取大量复杂特征,提出一种基于注意力机制、ResNext网络和长短时记忆(Long Short Term Memory, LSTM)网络的并行轴承故障诊断模型。首先,将采集的一维振动信号进行预处理;然后,分两路输入到模型中提取特征,其中一路输入到嵌入注意力机制的ResNext模块中,注意力机制可以增加重要特征的权重,减少模型运算量,另一路输入到LSTM网络中提取振动信号在时间序列上的依赖关系;最后,将两路提取到的特征进行融合输入到Softmax层进行故障分类。实验结果表明,与目前基于深度学习的轴承故障诊断方法相比,所提方法在轴承故障分类准确率上表现更好。
- 单位