摘要

以区间模糊偏好关系(IVFPR)和直觉模糊偏好关系(IFPR)的理论框架为依据,将勾股模糊数(PFN)引入偏好关系中,定义勾股模糊偏好关系(PFPR)和加性一致性PFPR.然后,提出标准化勾股模糊权重向量(PFWV)的概念,并给出构造加性一致性PFPR的转换公式.为获取任意给定的PFPR的权重向量,建立以给定的PFPR与构造的加性一致性PFPR偏差最小为目标的优化模型.针对多个勾股模糊偏好关系的集结,利用能够有效处理极端值并满足关于序关系单调的勾股模糊加权二次(PFWQ)算子作为集结工具.进一步,联合PFWQ算子和目标优化模型提出一种群体决策方法.最后,通过案例分析表明所提出方法的实用性和可行性.

全文