摘要

应用核主成分分析(KPCA)和T-S模糊神经网络方法对煤与瓦斯突出进行快速、精准预测。利用KPCA对实验样本数据中的多种煤与瓦斯致突因素进行降维,简化问题的复杂度,将选取的累计贡献率大于90%的4个主成分作为T-S模糊神经网络的输入参数,煤与瓦斯突出强度作为输出参数。利用实测数据进行验证,并与BP神经网络预测模型、T-S模糊神经网络预测模型的预测结果进行比较。结果表明,该方法建立的预测模型准确性、有效性更高,收敛时间短,适用于煤与瓦斯突出预测。

全文