摘要

交通流量预测是智能交通系统的核心内容,系统中多个功能的实现都是以其为基础。针对城市路网中交通流量的时域性以及准周期特性,提出了一种基于改进小波神经网路算法的交通流量预测方法。利用具有时域分辨能力的小波神经网络对流量信号进行分类,以实现对交通流量的预测;采用加动量项的方法对网络权值及参数进行修正,避免了神经网络训练时收敛缓慢以及陷入局部极小。通过仿真实验验证,提出方法可实现对交通流量的准确预测,并且可以有效地提高网络学习率。

全文