摘要
应用遗传算法优化BP神经网络进行水稻氮素营养诊断,为水稻的合理施氮提供理论指导。水稻田间试验供试品种为‘两优培九’,设置4个施氮水平(0、210、300、390 kg·hm-2)。在水稻幼穗分化期,扫描获取水稻顶部第三完全展开叶图像,并通过图像处理技术获取19维水稻图像中的颜色和几何形态特征,采用归一化处理、离散小波变换及主成分分析对原始数据进行预处理,并应用遗传算法优化的BP神经网络进行水稻氮素营养诊断。该方法建立的水稻氮素营养诊断模型较单一BP神经网络模型和传统遗传算法优化BP神经网络模型好,模型测试所得4个施氮水平的平均识别率分别为100.000%、99.000%、97.000%、100.000%,测试集样本平均总识别率达到99.000%。基于遗传算法优化的BP神经网络所建立的水稻氮素营养诊断模型具有较强的学习能力和泛化能力,能够很好地识别出水稻氮素营养的缺失,表明运用该方法能够很好地进行水稻氮素营养诊断识别。
-
单位江西省高等学校农业信息技术重点实验室; 江西农业大学