摘要

Fusarium wilt has seriously threatened the development of the banana industry. In order to analyze the miRNA-like (milRNA) and its regulatory function in the Fusarium oxysporum F. sp. cubense race 4 (Foc4), three Foc4 mycelia small RNA sequencing libraries were constructed. Totally 11, 783, 990 raw reads were obtained by sequencing, of which 3, 351, 578 valid reads can be used for subsequent milRNA identification. Through the comparison with the plant miRNAs in miRbase and the reported fungal milRNAs, seven conservative milRNAs and three novel milRNAs were identified. A total of 53 pairs of milRNA-mRNAs were identified through degradome sequencing to predict milRNA target genes. Through GO and KEGG enrichment analysis of target genes, milRNA was found in association with multiple metabolic pathways, including purine metabolism, glycerophospholipid metabolism, thiamine metabolism, and tricarboxylic acid cycle pathways, and would have an important impact on fungal growth and development. In the meantime, milRNA targeted the ABC transporter CDR4 and spore wall mature protein DIT1, thereby probably influencing the pathogenic process of Foc4. This study is the first to analyze milRNA-targeted genes in the pathogen Foc4 via degradome sequencing after milRNA was obtained by high-throughput sequencing, which provides an important reference for studying the regulatory functions of fungal milRNA and new ideas for the prevention and treatment of Fusarium wilt.