摘要
为了准确预测驾驶人的制动反应时间,建立了考虑差异化驾驶人特性的制动反应时间预测模型。以多种次任务驾驶行为作为差异化驾驶人特性的诱导因素设计了试验,在封闭的城市道路展开了实车试验并采集了制动反应时间数据,以自报式信息采集法获取了受试者的多维度驾驶特性变量数据,使用结构方程模型解构制动反应时间的影响因素并以路径系数优化BP神经网络权值,建立了基于SEM-BP神经网络的驾驶人制动反应时间预测模型。验证和测试结果表明,所提出的制动反应时间预测模型总体的回归R值大于0.9,总误差为0.032 4,有更好的预测精度和拟合性能,能够在考虑驾驶人多维度特性的同时降低网络收敛不稳定导致鲁棒性差的问题。
-
单位中国汽车技术研究中心有限公司; 燕山大学