齿轮箱是风电机组运行的关键设备。针对风电机组齿轮箱故障发生频繁、运行维护成本高等问题,提出了一种基于数据采集与监控(SCADA)系统异常数据清洗和动态神经网络的建模方法,对风机齿轮箱油池温度进行了建模。随后采用统计过程控制方法分析残差,根据残差分布特征计算阈值上下限,实现了齿轮箱油池温度异常状态预警。最后以双馈式风力发电机组为研究对象进行建模分析并给出实例,验证了该模型对齿轮箱油池温度预警的实用性和有效性。