摘要
本文研究非线性Dirac方程-i∑k=13αk?ku+aβu+M(x)u=g(x,|u|)u基态解的存在性,其中位势函数M(x)是周期的.当非线性项g在无穷远处分别满足超二次与局部超二次增长条件时,利用非Nehari流形方法,在非线性项没有严格单调条件的情形下,证明Nehari-Pankov型基态解的存在性.主要克服了两个困难:(1)相关能量泛函是强不定的,即工作空间分解成的正负子空间的维数都是无穷大,这导致经典的临界点定理不能直接应用;(2)当非线性项不是全局超二次时,验证Cerami序列的环绕结构并证明其有界性.
- 单位