摘要

发电机定子绕组温度是风力发电机健康状态的重要表征。实时预测绕组超温将有助于及时制定运维计划并排查故障源。提出基于极端梯度提升树(extremegradientboosting)与长短时记忆网络(longshorttermmemory,LSTM)加权融合的组合模型,进行风力发电机定子绕组温度预测,运用模型结构的差异性提升融合预测结果的准确性。经过风电机组SCADA数据集验证,结果表明:该方法能够有效预测绕组超温情况,具有较好的工程应用价值。