摘要

皮肤病变分割是计算机辅助诊断黑色素瘤的关键步骤。为了精确提取出皮肤病变区域,本研究基于U-Net提出一种新的皮肤病变分割方法。该方法引入通道权重更新模块和密集残差金字塔空间注意力模块,分别从通道和空间上提取有效信息,突出病变特征,抑制无关特征,从而提升网络对病变区域的分割精度;此外,构造了一种加权边界损失函数,通过对病变轮廓进行强监督,减少病变边缘特征的丢失。实验表明在ISIC 2018和PH2皮肤镜图像数据集中,该方法的Dice系数分别达到了91.3%、92.2%,相比U-Net提升了5.0%、4.3%。