为了实现上市公司信用风险的科学定量管理,提出了一种基于支持向量机(SVM)的信用风险评估方法。考虑到财务数据特征的非线性和高维性,采用等距特征映射(Isomap)算法对财务指标进行特征提取,以减少数据的冗余,针对人为选择SVM参数的盲目性,应用遗传算法优化其参数。通过以中国上市公司财务数据为基础的实证分析表明:基于Isomap的SVM模型比BPNN(BP神经网络)、PCA-SVM(主成分-支持向量机)模型具有更强的信用风险评估能力,小样本评估准确率达到91%。