摘要

目前深度学习的表情识别方法存在参数量大、实时性差的问题,提出基于改进卷积与分类器的轻量级人脸表情识别方法。在深度可分离卷积的基础上设计出浅层特征提取模块和轻量化卷积残差模块提取特征信息,然后改进分类器去替换全连接层进行表情分类。最终模型的参数量由11、171、271下降至5、925、288;同时在FER2013数据集和CK+数据集上保持了高达73.76%和97.74%的识别率,性能优于目前流行的ResNet18网络。