摘要

针对清洁水体低浓度CDOM内陆水域的水质遥感反演精度不高的问题,基于梯度提升回归树和GF-5卫星数据构建了千岛湖水质CDOM反演模型。利用该模型估算了千岛湖水体CDOM的时空分布,计算CDOM浓度与相关气象数据之间的相关性,分析可能影响CDOM时空格局和动态变化的环境因子。将所构建的梯度提升回归树模型与其他机器学习模型进行了比较,分析结果表明,所构建的梯度提升回归树模型反演CDOM精度相对较高。反演的千岛湖整体CDOM浓度较低(0.005~1.472 m-1),其季节性差异较为显著,秋季>夏季>春季>冬季。各个季节高CDOM浓度分布在位于湖的边缘区,主要是入水口以及湖周围与人类活动密切相关的地方,降雨量会增加千岛湖水体CDOM浓度,气压和风速对水质中CDOM的变化没有显著影响。