针对粒子群优化算法容易陷入局部极值、进化后期的收敛速度慢和精度低等问题,提出自适应惯性权重的粒子群优化算法。算法采用自适应更新惯性权重,添加影响算子,并通过惯性权重自适应调整学习因子,然后加入随机局部搜索策略;最后使用测试函数,通过和3种优化算法进行30次重复实验。结果表明,提出的算法具有更好的全局收敛能力,且收敛精度、和稳定性都有明显的提升。