摘要

大区域农田墒情遥感定量监测对当代精准农业应用意义重大,但如何提高监测精度一直是该领域的关键问题。融合多源遥感的方法可以充分发挥各种遥感的优势,是提高监测精度的重要技术手段。以河南省中东部为研究区域,利用MODIS、Sentinel数据,结合实测土壤含水量,根据植被覆盖、地表粗糙度和不同湿度的土壤对后向散射的贡献,利用BP神经网络模型构建上述参数的关系,分别对研究区2016年3-6月冬小麦高植被覆盖时期0~10 cm、0~20 cm深度土壤墒情反演。根据地表粗糙度参数的性质,提出了地表粗糙度不变假设,并结合遗传算法优化BP神经网络方法(GA-BP),进行对比实验。结果显示:(1)植被茂盛期,后向散射系数(σ)及其差值(?σ)与土壤墒情均具有一定的相关性,VV极化优于VH极化,差值优于原值;(2)在反演0~10 cm与0~20 cm深度土壤墒情时,BPσ、BP?σ、GA-BP?σ模型得到的结果精度均依次提高,其中GA-BP?σ模型的均方根误差0~10 cm为4.07%,0~20cm为3.42%;(3)3种BP神经网络模型皆与0~20 cm深度土壤墒情相关性较好,预测精度较高。研究表明:中原地区冬小麦全生育期地表粗糙度不变假设是成立的,后向散射系数差值(?σ)与土壤墒情的相关性更好,0~20 cm的根部墒情的遥测敏感度更高,