摘要

自然语言处理是人工智能领域中的一个热门方向,而文本分类作为自然语言处理中的关键技术受到专家学者的广泛关注。随着机器学习技术的发展,决策树算法已经在文本分类中取得了较好的分类效果。本文针对短文本分类问题,利用TFIDF提取文本特征后,结合梯度提升决策树算法进行文本分类,并与朴素贝叶斯、逻辑回归和支持向量机的分类效果进行对比分析,验证了梯度提升决策树用于短文本分类的可行性。

全文