基于YOLO v5的工人玩手机行为检测方法研究

作者:林宝华; 刘坤; 朱一帆; 王晓
来源:南京工程学院学报(自然科学版), 2023, 21(01): 39-44.
DOI:10.13960/j.issn.1672-2558.2023.01.007

摘要

为规范工人生产行为、减少安全事故发生,提出一种监控工人使用手机行为检测算法.该算法以YOLO v5模型为基础,对其网络结构和损失函数进行改进.首先,优化主干网络,将ConvNeXt Block和SPP结构引入浅层网络增加浅层特征的提取;然后,在主干网络与特征聚合网络之间构建CBAM注意力机制层,过滤冗余信息;最后,选取EIoU损失函数代替GIoU损失函数,提高模型收敛速度与检测结果的定位精度.通过自建工人使用手机行为数据集,分别对YOLO v5原模型、改进模型以及主流模型进行对比.试验结果表明,在人体和手机目标检测中,改进模型有更好的检测精度和检测速度.

全文