摘要

本发明公开了一种基于可形变自注意力机制的社交网络文本情感分析方法,用于分析用户话语的情感。步骤如下:将用户话语文本数据中的每个句子切分为词,将每个词用词向量表示;将词向量序列输入双向循环神经网络(Bi-LSTM)中得到每个词的编码表示;利用可形变自注意力机制,将词的编码表示转化为多种具有不同上下文范围的句子编码表示;将多种句子编码表示融合得到一个句子编码表示;将融合的句子编码表示输入到前馈神经网络(FFN)中分类,输出结果;根据模型输出结果和数据真实结果,最小化交叉熵损失函数迭代训练模型更新参数;将待分类的社交网络文本输入到经过训练的模型得到情感分析结果。