每一个Jordan代数都对应了一个Tits-Kantor-Koecher李代数.在扩张仿射李代数的分类中[1],A_1型李代数的分类依赖于欧氏空间上半格给出的Tits-Kantor-Koecher李代数.另外在相似的意义下,二维欧氏空间R~2中只有两个半格.设S是R~2上的任一半格,T(S)为半格S对应的Jordan代数,G(T(S))为相应的Tits-Kantor-Koecher李代数.利用Wakimoto自由场的方法给出李代数G(T(S))的一类顶点表示.