摘要
针对当前X射线图像安检危险品识别方法未采集模糊静态图像目标,导致安检危险品图像呈现效果较差、危险品识别率较低、识别时间较长的问题,提出了基于VR技术的X射线图像安检危险品自动识别方法。通过X射线获取安检危险品成像,采用VR技术采集模糊静态图像目标,利用光学成像原理分层处理模糊静态图像目标,获取模糊静态图像目标亮度层和细节层,压缩模糊静态图像目标自适应分区,实现危险品图像目标重现。基于沃尔什变换方法提取危险品图像纹理特征,构建BP神经网络模型,反复调整权值和阈值并进行训练,保证输出误差最小化,实现X射线图像安检危险品自动识别。实验结果表明:所提方法的安检危险品图像呈现效果较好,能够有效提高危险品识别率,缩短危险品识别时间,具备良好的危险品识别性能。
-
单位中国海关管理干部学院