基于能量不变二次化方法,构造了一个求解Cahn-Hilliard方程的线性数值格式,该线性数值格式对非线性项半显式处理,每步迭代相应的半离散化方程只需要求解一个线性方程;证明了该线性数值格式是无条件能量稳定的,而且是唯一可解的;讨论了该线性数值格式在时间方向的误差估计.数值例子表明:该线性数值格式的数值解在时间方向上基本达到二阶精度,能够有效模拟相位变化过程.