摘要
针对交通标志检测速度慢和目标大小与类别极度不平衡等问题,提出一种融合Transformer和改进PANet网络的YOLOv5s交通标志检测算法。首先在不增加模型复杂度的前提下,将主干网络末端与Transformer融合以提高网络特征提取能力;其次由于所采用交通标志数据集的目标尺度太小,导致网络32倍大尺度检测层检测效果不佳,故不采用相关网络层,同时采用K-means算法得出适合的预测候选框;然后改进损失函数以解决正负样本极度不平衡问题。最后将所提出的改进算法在Jetson AGX Xavier平台上部署验证。实验结果表明,所提算法检测性能更佳,其准确率和召回率在原网络的基础上分别提高了2.2%和0.7%,模型参数量和计算复杂度分别减少了25.8%和10.1%。在Xavier上的检测速度达到76FPS,满足实时交通标志检测的要求且易于在实际场景部署。
-
单位贵州大学; 中国科学院