摘要

倒伏是农业生产中造成减产、作物品质降低的主要原因,基于无人机飞控平台农情监测系统的灾情严重度实时监测以及时采取防治措施提供科学依据。以人工目视解译统计得到的倒伏面积作为判别依据,通过对比最小距离法、最大似然法、神经网络、支持向量机四种监督分类方法对单张无人机影像的分类效果,择优用于无人机拼接数码影像,估算江苏里下河地区小麦倒伏面积。结果表明:最小距离法、最大似然法、神经网络、支持向量机四种方法的分类精度分别为63.57%、98.15%、81.13%、85.04%,最大似然分类法得到的精度最高,其运算速度也最快,与无人机遥感平台农情监测系统快速、便捷的需求相符。将最大似然法应用于整张拼接影像,监测得到倒伏像元个数为7 183 950,估算面积为353.810 8m2,与人工目视解译结果的误差为7.43%,突出了无人机在信息获取方面方便、快捷的特点,表明搭载数码相机的无人机遥感平台对农情监测有一定可行性,可以为精准农业深入开展提供新的契机。