摘要
机械设备故障诊断在工业应用中具有重要的意义。传统的基于振动信号处理与分析的故障诊断方法,依赖于丰富的专业知识和人工经验,难以保证准确的特征提取与故障诊断。利用深度学习方法可以自动学习数据深层次特征的特点,提出一种基于改进卷积深度置信网络的滚动轴承故障定性、定量诊断方法。首先,为了提供较好的浅层输入,将原始振动信号转换至频域信号;其次,在模型训练过程中,引入Adam优化器,加快模型训练,提高模型收敛速度;最后,为了充分发挥模型各层特征表征能力,对模型结构进行优化,提出多层特征融合学习结构,以提高模型的泛化能力。实验结果表明,所提出的改进模型相比于传统的栈式自动编码器、人工神经网络、深度置信网络以及标准卷积深度信念网络,具有更好的诊断精度,有效地实现了轴承故障的定性、定量化诊断。
- 单位