摘要

针对数控机床主轴故障诊断中标记样本量小的问题,提出了一种基于多传感器的迁移学习的故障诊断方法。首先,采集安装在数控机床主轴上的多个三轴加速度传感器采集的原始振动信号,并将信号转换成图像的变换方法得到输入。其次,比较了TrAdaBoost迁移算法和基于CNN网络迁移模型算法。最后,针对CNN网络迁移模型,用目标类替换输出层,并用最优网络提取较低层次的特征,对更高层次的神经网络进行微调。实验结果表明,该方法能够正确识别机床主轴状态,具有很好的故障检测能力。

全文