摘要
人脸表情识别是近年来非常火热的一个研究领域,随着深度学习的发展,越来越多的深度学习方法用于表情识别中。针对胶囊神经网络(CapsNet)更关注的是图像高层空间信息、低层空间特征提取不全面的问题,提出了特征提取与胶囊网络结合的人脸表情识别算法。本文先使用局部二值模式(LBP)算子提取图像纹理特征,与胶囊网络结合形成多通道输入胶囊网络。为了进一步加强低层空间特征提取,在提取纹理特征后加入了深度残差网络(ResNet),与胶囊网络结合形成多通道输入增强胶囊网络。为了验证多通道输入胶囊网络和多通道输入增强胶囊网络的性能,本文在公开表情数据集CK+和RAF-DB分别进行了对照实验,得到了99.69%,82.02%准确率,优于其它的表情识别算法。
- 单位