摘要
基于传统X射线图像的铝合金轮毂铸件缺陷检测方法存在人工检测效率低、误检率高、检测精度较差等问题,提出一种基于深度学习的铝合金轮毂铸件图像缺陷检测方法。通过引入直方图均衡化方法,实现533组铝合金铸件X射线图像缺陷特征增强;同时基于Mosaic数据增广策略随机生成含有多尺度不同缺陷类型的新图像数据,提升图像的复杂度;修改了YOLOv5主干网络,引入SENet注意力机制模块对输入特征图的重要通道进行特征提取增强。结果表明,该方法对铸件缺陷平均检测精度(mAP)达到了99.6%,对比YOLOv3、YOLOv4以及YOLOv5主流算法,平均检测精度分别提升了9%、5.1%、4.2%。相较于原网络模型,常见的4种类型(气孔、缩松、裂纹、夹杂)铸件缺陷平均检测精度提升了10.83%。该方法具有更好的泛化能力,可实现铸件多类型缺陷的自动检测,能够满足工业实际需求。
- 单位