摘要

随着金属露天矿开采深度不断加大,道路运输条件愈发复杂,无人矿车行驶在道路上面临着各种障碍物的安全隐患,因此对无人矿卡障碍物智能检测提出了更高要求。提出了一种融合Swin Transformer与CNN的露天矿车前障碍物智能检测方法,障碍物检测模型需要建立长期依赖关系来处理不断增加的图像数据,Swin Transformer可以关注全局语义信息,有利于长期建模。将Swin Transformer融入YOLOX模型的骨干特征提取网络中,充分利用多头注意力机制,对图像特征进行预处理,在加强特征提取网络中加入CBAM注意力机制模块,使模型在后续的特征提取中能够提取更多的表征信息。该模型使用的数据集均来自实地矿山,并采用数据增强方式进行预处理。经过实地矿山数据对比验证试验,结果表明:该方法能够有效识别背景复杂的金属露天矿区非结构化道路障碍物,检测精度达到91.57%m AP,检测速度达到56.86 fps,具有较好的小目标和多尺度目标检测性能,可以满足无人矿卡在金属露天矿区的高精度检测要求。

全文