为了提高大数据挖掘的效率及准确度,文中将稀疏表示和特征加权运用于大数据处理过程中。首先,采用求解线性方程稀疏解的方式对大数据进行特征分类,在稀疏解的求解过程中利用向量的范数将此过程转化为最优化目标函数的求解。在完成特征分类后进行特征提取以降低数据维度,最后充分结合数据在类中的分布情况进行有效加权来实现大数据挖掘。实验结果表明,相比于常见的特征提取和特征加权算法,提出的算法在查全率和查准率方面均呈现出明显优势。