摘要

针对滚动轴承故障信号分块压缩感知过程中,因分块之间的稀疏度差异较大以及重构支撑集构造不合理,致使信号重构精度较低,影响信号整体重构效果的问题,提出基于自适应分块前向后向分段正交匹配追踪算法(Adaptive block forward and backward stagewise orthogonal matching pursuit,Adaptive Block-FBStOMP)。首先,依据短时自相关算法确定滚动轴承故障信号自适应分块长度,并根据此长度对信号进行自适应分块;其次,利用K奇异值分解(K-singular value decomposition, K-SVD算法训练稀疏字典;最后,提出FBSt OMP算法,在重构过程中增加原子回溯和二次筛选过程,提高有效支撑集原子被全部选入支撑集中的可能性,改善重构效果。通过仿真信号和故障信号试验分析可知,与传统压缩感知重构算法相比,该算法能够有效提升滚动轴承故障信号的重构精度。