摘要

在无线通信系统中,射频功放的非线性是信号失真与频谱增生的主要原因,尤其是对于采用64QAM、256QAM等高峰均功率比的复杂调制系统,对射频功放线性度的要求越来越高;然而宽带射频功放中存在的强记忆效应严重地降低了基于传统非线性模型的数字预失真器的线性化性能。文章提出广义长短期记忆(LSTM)神经网络模型,通过输入的时序特性,从时间轴上进行模型迭代,利用LSTM模型独特的长短时序结构以更好地表征宽带射频功放的记忆效应,同时引入时间超前项以构建广义的LSTM模型,进一步增强其动态非线性建模能力。在不同超参数下的建模结果表明,该模型的归一化均方误差(NMSE)指标可达-42.2895 dB。最后,使用20 MHz带宽的4载波WCDMA信号,对中心频率1900 MHz的50 W Doherty功放进行预失真线性化实验验证。实验结果证实了基于广义LSTM神经网络模型的数字预失真器可以使互调分量降低达23.27 dB,大大优于记忆多项式等传统非线性模型的非线性校正性能。